A Simple Polynomial Algorithm for the Longest Path Problem on Cocomparability Graphs
نویسندگان
چکیده
Given a graph G, the longest path problem asks to compute a simple path of G with the largest number of vertices. This problem is the most natural optimization version of the well-known and well-studied Hamiltonian path problem, and thus it is NP-hard on general graphs. However, in contrast to the Hamiltonian path problem, there are only a few restricted graph families, such as trees, and some small graph classes where polynomial algorithms for the longest path problem have been found. Recently it has been shown that this problem can be solved in polynomial time on interval graphs by applying dynamic programming to a characterizing ordering of the vertices of the given graph [K. Ioannidou, G. B. Mertzios, and S. D. Nikolopoulos, Algorithmica, 61 (2011), pp. 320–341], thus answering an open question. In the present paper, we provide the first polynomial algorithm for the longest path problem on a much greater class, namely on cocomparability graphs. Our algorithm uses a similar, but essentially simpler, dynamic programming approach, which is applied to a lexicographic depth first search (LDFS) characterizing ordering of the vertices of a cocomparability graph. Therefore, our results provide evidence that this general dynamic programming approach can be used in a more general setting, leading to efficient algorithms for the longest path problem on greater classes of graphs. LDFS has recently been introduced in [D. G. Corneil and R. M. Krueger, SIAM J. Discrete Math., 22 (2008), pp. 1259–1276]. Since then, a similar phenomenon of extending an existing interval graph algorithm to cocomparability graphs by using an LDFS preprocessing step has also been observed for the minimum path cover problem [D. G. Corneil, B. Dalton, and M. Habib, submitted]. Therefore, more interestingly, our results also provide evidence that cocomparability graphs present an interval graph structure when they are considered using an LDFS ordering of their vertices, which may lead to other new and more efficient combinatorial algorithms.
منابع مشابه
A Polynomial Time Algorithm for Longest Paths in Biconvex Graphs
The longest path problem is the problem of finding a simple path of maximum length in a graph. Polynomial solutions for this problem are known only for special classes of graphs, while it is NP-hard on general graphs. In this paper we are proposing a O(n) time algorithm to find the longest path on biconvex graphs, where n is the number of vertices of the input graph. We have used Dynamic Progra...
متن کاملHardness and approximation of minimum distortion embeddings
We show that the problem of computing a minimum distortion embedding of a given graph into a path remains NP-hard when the input graph is restricted to a bipartite, cobipartite, or split graph. This implies the NP-hardness of the problem also on chordal, cocomparability, and AT-free graphs. This problem is hard to approximate within a constant factor on arbitrary graphs. We give polynomial-time...
متن کاملLongest Path Problems on Ptolemaic Graphs
SUMMARY Longest path problem is a problem for finding a longest path in a given graph. While the graph classes in which the Hamiltonian path problem can be solved efficiently are widely investigated, there are few known graph classes such that the longest path problem can be solved efficiently. Polynomial time algorithms for finding a longest cycle and a longest path in a Ptolemaic graph are pr...
متن کاملComputing and Counting the Longest Paths on Circular-Arc Graphs in Polynomial Time
The longest path problem asks for a path with the largest number of vertices in a given graph. In contrast to the Hamiltonian path problem, until recently polynomial algorithms for the longest path problem were known only for small graph classes, such as trees. Recently, a polynomial algorithm for this problem on interval graphs has been presented in [20] with running time O(n) on a graph with ...
متن کاملPolynomial Fixed-parameter Algorithms: A Case Study for Longest Path on Interval Graphs
We study the design of fixed-parameter algorithms for problems already known to be solvable in polynomial time. The main motivation is to get more efficient algorithms for problems with unattractive polynomial running times. Here, we focus on a fundamental graph problem: Longest Path, that is, given an undirected graph, find a maximum-length path in G. Longest Path is NP-hard in general but kno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 26 شماره
صفحات -
تاریخ انتشار 2012